
#### ARCTIC SATELLITE KNOWLEDGE (ASK): INTEGRATING MARITIME SHIP TRAFFIC



#### Prof. Paul Arthur Berkman



Science Diplomacy Center™ United Nations Institute for Training and Research (UNITAR) pab@scidiplo.org | paul.berkman@unitar.org



#### **NEXT-GENERATION ARCTIC MARINE SHIPPING ASSESSMENTS**

| TABLE 1: NEXT-GENERATION ARCTIC MARINE SHIPPING ASSESSMENTS <sup>1</sup> |                                           |                                                   |  |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|--|--|--|--|--|
| Attribute                                                                | ARCTIC MARINE SHIPPING ASSESSMENTS (AMSA) |                                                   |  |  |  |  |  |
| ATTRIDUTE                                                                | AMSA (2009)                               | Next-Generation                                   |  |  |  |  |  |
| Sampling Period                                                          | 2004                                      | 2009-present                                      |  |  |  |  |  |
| Data Sources                                                             | Arctic States Individually and with       | Diverse Government and Commercial Automatic       |  |  |  |  |  |
|                                                                          | the Arctic Council                        | Identification System (AIS) Sources               |  |  |  |  |  |
| Observation Coverage                                                     | Point, Regional                           | Point, Regional and Pan-Arctic                    |  |  |  |  |  |
| Observation Scope                                                        | Ground-Based                              | Ground-Based and Satellite                        |  |  |  |  |  |
| <b>Observation Frequency</b>                                             | Inconsistent over Space and Time          | Synoptic and Continuous (from minutes to decades) |  |  |  |  |  |
| Ship-Type Designations                                                   | Variable National Designations            | Standardized International Designations           |  |  |  |  |  |
| Individual Ship Attributes                                               | Inconsistent and Incomplete               | Consistent and Comprehensive                      |  |  |  |  |  |
| Analytical Capacity                                                      | Limited Granularity and Questions         | Open-Ended Granularity and Questions              |  |  |  |  |  |
| Science-Diplomacy                                                        | Scenarios and Negotiated                  | Holistic Evidence and                             |  |  |  |  |  |
| Contributions                                                            | Recommendations                           | Options (without advocacy)                        |  |  |  |  |  |
| Informed Decisionmaking <sup>2</sup>                                     | Governance Mechanisms                     | Operations, Built Infrastructure and              |  |  |  |  |  |
| mormed Decisionmaking                                                    | Governance wechanisms                     | Governance Mechanisms                             |  |  |  |  |  |

<sup>1</sup> Updated from Berkman et al. (2020a), involving Automatic Identification System (AIS) data collected by polar-orbiting satellites. <sup>2</sup> Informed decisions operate across a 'continuum of urgencies' short-to-long term (Berkman et al. 2020c), as elaborated subsequently (Berkman 2020a,b).

Arctic Options / Pan-Arctic Options Projects (2013-2022): Holistic Integration for Arctic Coastal-Marine Sustainability

(United States, Russia, Norway, France, China and Canada)

# **ASK – A Brief History**



(ARCPS) Programs, NSF Office of Polar Programs.

A Sector

Springer

Diplomer Center\* D Springer

### International, Transdisciplinary and Inclusive

NOAA Arctic Report Card 2022

#### Satellite Record of Pan-Arctic Maritime Ship Traffic

P. A. Berkman<sup>1,2,3</sup>, G. J. Fiske<sup>4</sup>, D. Lorenzini<sup>5</sup>, O. R. Young<sup>6</sup>, K. Pletnikoff<sup>7,8</sup>, J. M. Grebmeier<sup>9</sup>, L. M. Fernandez<sup>10</sup>, L. M. Divine<sup>11</sup>, D. Causey<sup>12</sup>, K. E. Kapsar<sup>13</sup> and L. L. Jørgensen<sup>14</sup>

<sup>1</sup>Science Diplomacy Center<sup>™</sup>, Falmouth, MA USA

<sup>2</sup>Program on Negotiation at Harvard Law School, Cambridge, MA USA

<sup>3</sup>United Nations Institute for Training and Research (UNITAR), Geneva, Switzerland

<sup>4</sup>Woodwell Climate Research Center, Falmouth, MA USA

<sup>5</sup>AAC SpaceQuest, Fairfax, VA USA

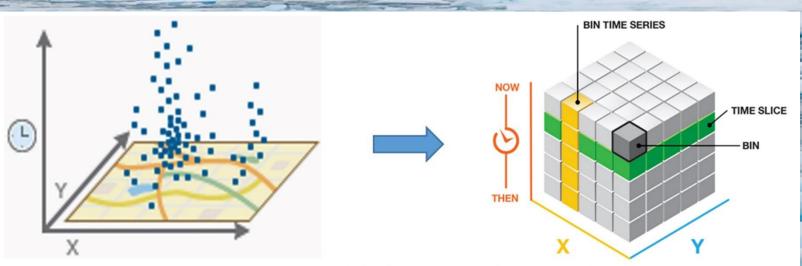
<sup>6</sup>Bren School of Environmental Science & Management, University of California, Santa Barbara, CA USA

<sup>7</sup>Aleutian Pribilof Islands Association, Anchorage, AK USA

<sup>8</sup>Aleut International Association, Anchorage, AK USA

<sup>9</sup>Chesapeake Biological Laboratory, Center for Environmental Science, University of Maryland, Solomons, MD USA

<sup>10</sup>Department of Economics, Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA USA


<sup>11</sup>Aleut Community of St. Paul Island Tribal Government, St. Paul Island, AK USA

<sup>12</sup>Arctic Domain Awareness Center, University of Alaska, Anchorage, AK USA

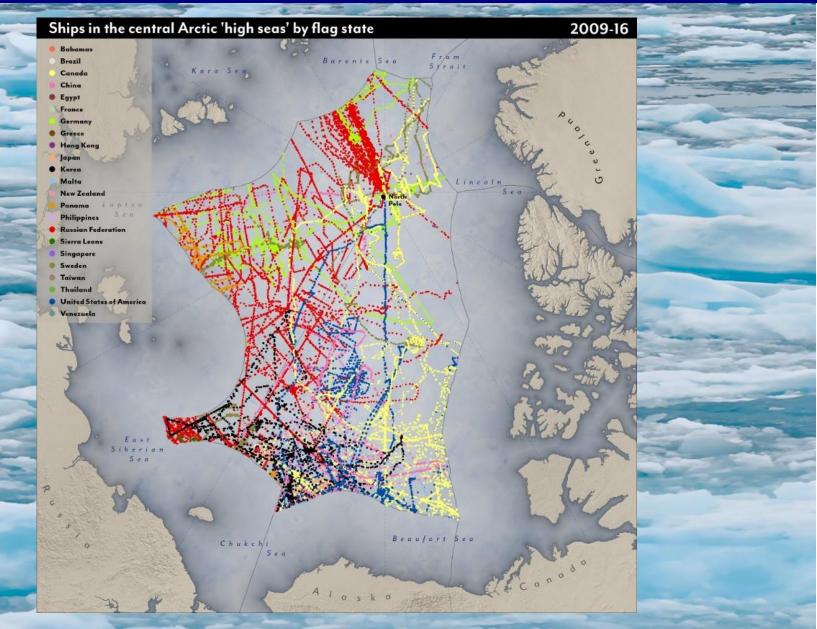
<sup>13</sup>Center for Systems Integration & Sustainability, Department of Fisheries & Wildlife, Michigan State University, East Lansing, MI USA

<sup>14</sup>Institute of Marine Research, Hjalmar Johansens Gate 14, 9007 Tromsø, Norway

#### **KNOWLEDGE DISCOVERY OVER SPACE AND TIME**

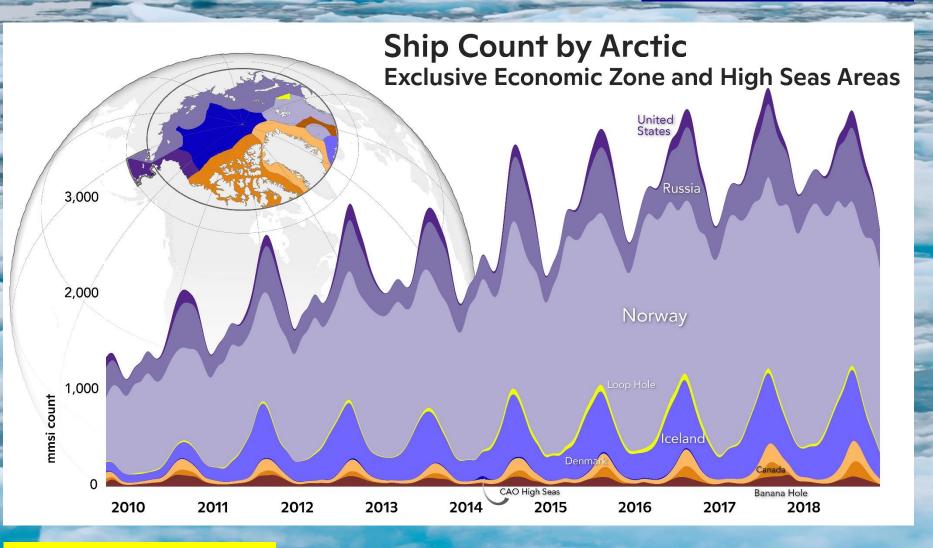


**FIGURE 2: KNOWLEDGE DISCOVERY OVER SPACE AND TIME (Left)** Three-dimensional system to analyze change in issues, impacts or resources that are measured over space (x-y, latitude-longitude) and time (past to future). (**Right**) The 'space-time cube' from ESRI (2017) is a geospatial approach that can be applied to 'big data' questions with vector-based analyses (points, lines and polygons) within and between 'bins.' From Berkman et al. (2020).


| TABLE 3: MARITIME SHIP TRAFFIC ATTRIBUTES TO INTERPRET SOCIOECONOMIC DYNAMICS IN THE CENTRAL ARCTIC OCEAN |
|-----------------------------------------------------------------------------------------------------------|
| (CAO) HIGH SEAS <sup>1</sup> WITH SURROUNDING EXCLUSIVE ECONOMIC ZONES (EEZ) SHOWN IN FIGURE 1            |

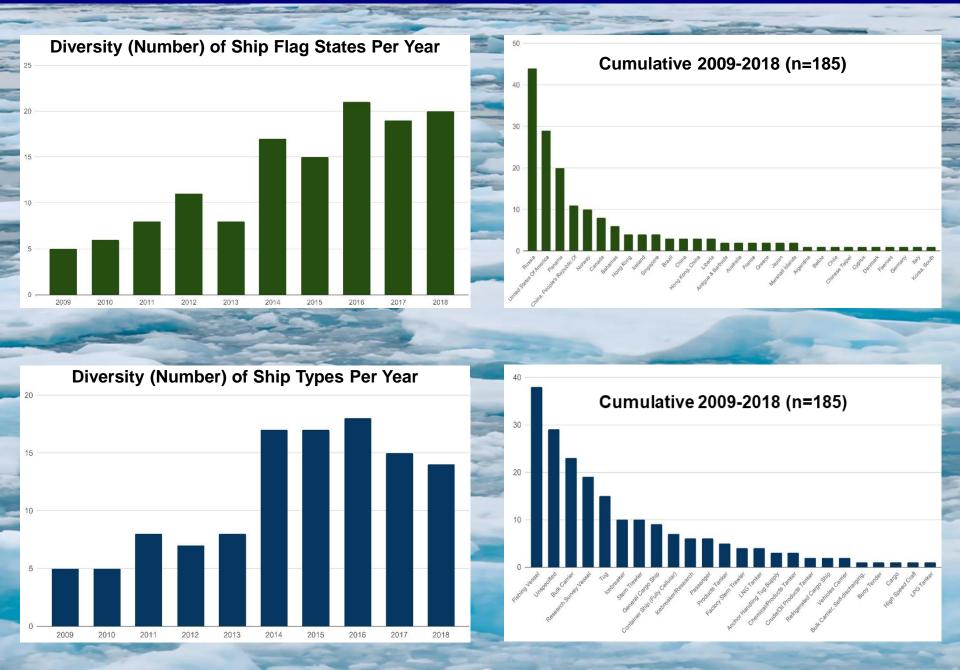
| Unique Ship Designation <sup>2</sup> |                        | Ship Metadata Attribute <sup>3</sup> |                   | CAO High Seas Regional Visit |                   |                            |                                      |
|--------------------------------------|------------------------|--------------------------------------|-------------------|------------------------------|-------------------|----------------------------|--------------------------------------|
|                                      | Ship Name <sup>5</sup> | IMO <sup>6</sup>                     | Flag <sup>7</sup> | Type <sup>8</sup>            | Size <sup>9</sup> | Dates in CAO <sup>10</sup> | Longitudinal Positions <sup>12</sup> |

<sup>1</sup>Summary of the satellite Automatic Identification System (AIS) data for the CAO High Seas is available through the Arctic Data Center (<u>https://arcticdata.io/</u>) in conjunction with baseline dataset from September 1, 2009 through December 31, 2016 north of the Arctic Circle (Berkman et al. 2020a), derived from the from the Aprize satellite constellation launched by SpaceQuest Ltd. (Berkman et al. 2020b); <sup>2</sup>From AIS data file; <sup>3</sup>Selected AIS metadata attributes from among those available (NAVCEN 2019); <sup>4</sup>Mobile Maritime Service Identity (MMSI) as the unique ship identifier, which would be precluded with the Arctic Ship Traffic Database (ASTD) that anonymizes records with access Levels 2 and 3 (PAME 2020b); <sup>5</sup>Ship names (which may change) were noted, but MMSI (which remains with each ship) was used to identify unique ships; <sup>6</sup>International Maritime Organization (IMO) registered ships with Class-A transponders were used to validate the AIS record; <sup>7</sup>Nation (which may change) at time of each CAO visit; <sup>8</sup>Designation of ship type directly from the AIS data file (Marine Traffic 2018), recognizing there is a different IMO schema of ship types (IHS Markit 2017); <sup>9</sup>tonnage size-classes; <sup>10</sup>During period; <sup>11</sup>Longitudinal positions in the CAO High Seas.

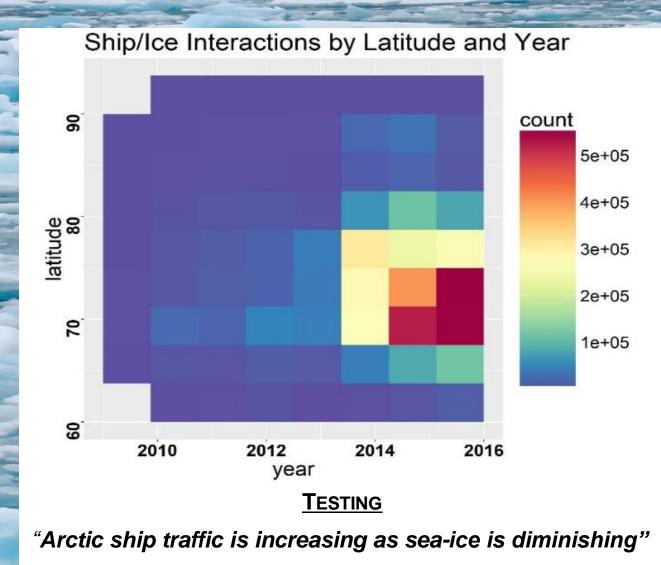

#### 173,000,000 AIS records with 21,005 unique ships during the 2009-2018

#### Arctic Maritime Ship Traffic Community by Nations Central Arctic Ocean (CAO) High Seas



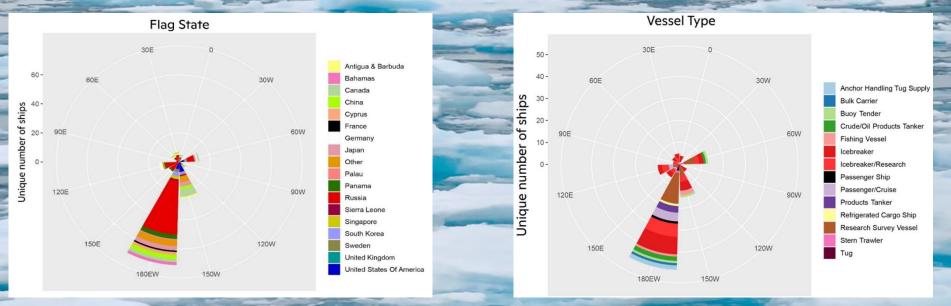

#### **Circumpolar Distribution of Arctic Maritime Ship Traffic**

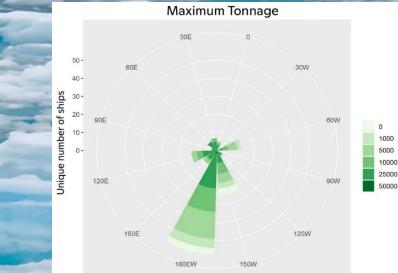
#### **Biogeophysical**




Socio-Economic

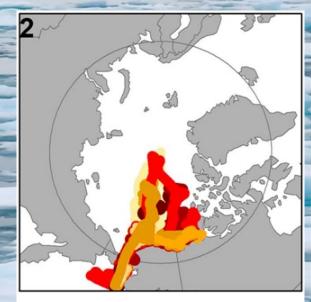
### Ship Traffic Diversity Over Time in the CAO High Seas





# **'Ship-Ice Hypothesis'**



(Berkman et al. 2020a, 2022a,b)


# Pacific Sector Directionality of Ship Traffic Into the CAO High Seas (2009-2018)







#### What Questions do you want to ASK?



'Healy' – Arctic 2009-2016

