

College of Earth, Ocean, & Environment

SCHOOL OF MARINE SCIENCE & POLICY

Ingesting Data to Ecosystem and Machine-Learning Models

Yun Li¹

Tianyu Zhou¹, Zhangxian Ouyang¹, Wei-Jun Cai¹, Rubao Ji²

University of Delaware
 Biology Department, WHOI

Outline:

- Background
- Data for Modeling (what data do we need? How do we use data?)
- Case Studies
- Synthesis Papers

Background

Significant long-term increase of Chl a in most part of the western AO

These physical and biological changes lead to heterogeneous *p*CO₂ responses

Background (cont'd)

Net community production (NCP) is not linearly related to biological production rates.

Data for Modeling

What data do we use? (examples)

- Sea ice concentration
- Temperature
- Salinity
- Wind speed and direction

- NO₃
- pCO₂
- DIC
- pH

- Chlorophyll
- Gross Primary Production
 (GPP)
- O_2/Ar

and more ...

Data for Modeling

How do we use data?

Machine-learning or Process-based **Performance of Uncertainties of** Ecosystem Model Output Model Input Model Constrain the model (e.g., assimilation, parameter selection) Train the model

Data Compilation

Compiled pCO₂ data

- Most data are available in the Pacific and Atlantic sectors
- Data in the high-latitude Arctic Ocean remain sparse
- Recent data of 2014-2020 nearly doubled the total number

Data Compilation

Compiled O₂/Ar data

- Concentrated in Chukchi and Beaufort Seas and few in high-latitude open-water area
- Available in most years from 2011-2021 and from late spring to early winter

Uncertainties of Model Input

- Uncertainties vary across variables
- Discrepancies are location- and season-dependent.

Constrain Process-based Model

 Constrain rates related to physical exchange, biological utilization, and chemical reaction processes.

Train Process-based Model

Training

300 350 400 450

Measured pCO₂ (µatm)

n = 16271

 $R^2 = 0.98$

RMSD = 7.8

450

350

300

250

200

Modeled pCO_2 (μ atm)

100

30

10

3

- About 0.4 million pCO₂
 measurements in the
 past decade
- Strong shelf-to-basin gradient

Case Study I – pCO₂

Early season during ice retreat (Apr to Jun)?

Case Study I – pCO₂

Early season during ice retreat (Apr to Jun)

- reversed spatial gradients at low latitudes
- high pCO₂ in the newly opened water along sea ice edge

Case Study I – pCO₂

Case Study II – NCP

Random Forest Model:

 $NCP = f(SSS, Daylength, SST, wind^2, Chl, SIC)$

Case Study II – NCP

ML models produce weekly distribution of Net Community Production in the Western AO.

Synthesis

Motivation:

Models and approaches use underlying assumption for dynamic processes to estimate the carbon sink in the Arctic Ocean:

- Ecosystem Model: 153±14 TgC yr⁻¹ (Manizza et al., 2019)
- Atmospheric Inversion Model: 400~600 TgC yr⁻¹ (Wanninkhof et al., 2013)

Objectives: A data-based carbon flux and budget analysis

O1: Provide independent carbon sink estimation

O2: Quantify the relative contribution of NCP and air-sea fluxes to carbon budget

$$F_{CO_2} = K_S \cdot k_{CO_2} \cdot (1 - SIC) \cdot \Delta pCO_2$$

$$\frac{d \int_0^{MLD} DICdz}{dt} = F_{CO_2} + F_{ice} + K \cdot \Delta DIC_{vert} + NCP$$

Case Study I

Case Study II

Synthesis

Objectives:

O1: Biological production regimes classification (e.g., recycle- vs export-dominant system)

O2: Identify key environmental drivers and dynamics of pCO_2 and NCP seasonality

O3: Detect seasonal timing and duration and their impacts on year-to-year changes of pCO₂ and NCP

